36 research outputs found

    Traffic Signal Consensus Control

    Get PDF
    We introduce a model for traffic signal management based on network consensus control principles. The underlying principle in a consensus approach is that traffic signal cycles are adjusted in a distributed way so as to achieve desirable ratios of queue lengths throughout the street network. This approach tends to reduce traffic congestion due to queue saturation at any particular city block and it appears less susceptible to congestion due to unexpected traffic loads on the street grid. We developed simulation tools based on the MATLAB computing environment to analyze the use of the mathematical consensus approach to manage the signal control on an urban street network

    Introduction to Mathematical Analysis I - 3rd Edition

    Get PDF
    Video lectures explaining problem solving strategies are available Our goal in this set of lecture notes is to provide students with a strong foundation in mathematical analysis. Such a foundation is crucial for future study of deeper topics of analysis. Students should be familiar with most of the concepts presented here after completing the calculus sequence. However, these concepts will be reinforced through rigorous proofs. The lecture notes contain topics of real analysis usually covered in a 10-week course: the completeness axiom, sequences and convergence, continuity, and differentiation. In addition, the notes include many carefully selected exercises of various levels of difficulty. Hints and solutions to selected exercises are available in the back of the book. For each section, there is at least one exercise with hints or fully solved. For those exercises, besides the solutions, there are explanations about the process itself and examples of more general problems where the same technique may be used. The last chapter contains additional topics. These include topological properties of the real line, generalizations of the extreme value theorem and more contemporary topics that expand on the notions of continuity or optimization. Lower and upper semicontinuity, differentiation of convex functions, and generalized differentiation of non-differentiable convex functions can be used as optional mathematical projects. Print on DemandStandard print copy (paperback)Premium print copy (hardcover) Adopt/Adapt If you are an instructor adopting or adapting this PDXOpen textbook, please help us understand your use by filling out this formhttps://pdxscholar.library.pdx.edu/pdxopen/1048/thumbnail.jp

    Hierarchically Consistent Control Systems

    Get PDF
    Large-scale control systems typically possess a hierarchical architecture in order to manage complexity. Higher levels of the hierarchy utilize coarser models of the system, resulting from aggregating the detailed lower level models. In this layered control paradigm, the notion of hierarchical consistency is important, as it ensures the implementation of high-level objectives by the lower level system. In this paper, we define a notion of modeling hierarchy for continuous control systems and obtain characterizations for hierarchically consistent linear systems with respect to controllability objectives. As an interesting byproduct, we obtain a hierarchical controllability criterion for linear systems from which we recover the best of the known controllability algorithms from numerical linear algebra

    Stable Motions of Vehicle Formations

    Get PDF
    We investigate stable maneuvers for a group of autonomous vehicles while moving in formation. The allowed decentralized feeback laws are factored through the Laplacian matrix of the communication graph. We show that such laws allow for stable circular or elliptical motions for certain vehicle dynamics. We find necessary and sufficient conditions on the feedback gains and the dynamic parameters for convergence to formation. In particular, we prove that for undirected graphs there exist feedback gains that stabilize rotational (or elliptical) motions of arbitrary radius (or eceentricity). In the directed graph case we provide necessary and sufficient conditions on the curvature that guarantee stability for a given choice of feedback gains. We also investigate stable motions involving reorientation of the formation along the direction of motion

    Teleoperation experiments with a Utah/MIT hand and a VPL DataGlove

    Get PDF
    A teleoperation system capable of controlling a Utah/MIT Dextrous Hand using a VPL DataGlove as a master is presented. Additionally the system is capable of running the dextrous hand in robotic (autonomous) mode as new programs are developed. The software and hardware architecture used is presented and the experiments performed are described. The communication and calibration issues involved are analyzed and applications to the analysis and development of automated dextrous manipulations are investigated

    On the Decidability of Reachability in Linear Time-Invariant Systems

    Full text link
    We consider the decidability of state-to-state reachability in linear time-invariant control systems over discrete time. We analyse this problem with respect to the allowable control sets, which in general are assumed to be defined by boolean combinations of linear inequalities. Decidability of the version of the reachability problem in which control sets are affine subspaces of Rn\mathbb{R}^n is a fundamental result in control theory. Our first result is that reachability is undecidable if the set of controls is a finite union of affine subspaces. We also consider versions of the reachability problem in which (i)~the set of controls consists of a single affine subspace together with the origin and (ii)~the set of controls is a convex polytope. In these two cases we respectively show that the reachability problem is as hard as Skolem's Problem and the Positivity Problem for linear recurrence sequences (whose decidability has been open for several decades). Our main contribution is to show decidability of a version of the reachability problem in which control sets are convex polytopes, under certain spectral assumptions on the transition matrix

    A Decentralized Network Consensus Control Approach for Urban Traffic Signal Optimization

    Get PDF
    Automobile traffic congestion in urban areas is a worsening problem that comes with significant economic and social costs. This report offers a new approach to urban congestion management through traffic signal control

    Traffic Signal Consensus Control

    Get PDF
    We introduce a model for traffic signal management based on network consensus control principles. The underlying principle in a consensus approach is that traffic signal cycles are adjusted in a distributed way so as to achieve desirable ratios of queue lengths throughout the street network. This approach tends to reduce traffic congestion due to queue saturation at any particular city block and it appears less susceptible to congestion due to unexpected traffic loads on the street grid. We developed simulation tools based on the MATLAB computing environment to analyze the use of the mathematical consensus approach to manage the signal control on an urban street network

    Introduction to Mathematical Analysis I - Second Edition

    Get PDF
    Video lectures explaining problem solving strategies are available Our goal in this set of lecture notes is to provide students with a strong foundation in mathematical analysis. Such a foundation is crucial for future study of deeper topics of analysis. Students should be familiar with most of the concepts presented here after completing the calculus sequence. However, these concepts will be reinforced through rigorous proofs. The lecture notes contain topics of real analysis usually covered in a 10-week course: the completeness axiom, sequences and convergence, continuity, and differentiation. The lecture notes also contain many well-selected exercises of various levels. Although these topics are written in a more abstract way compared with those available in some textbooks, teachers can choose to simplify them depending on the background of the students. For instance, rather than introducing the topology of the real line to students, related topological concepts can be replaced by more familiar concepts such as open and closed intervals. Some other topics such as lower and upper semicontinuity, differentiation of convex functions, and generalized differentiation of non-differentiable convex functions can be used as optional mathematical projects. In this way, the lecture notes are suitable for teaching students of different backgrounds. The second edition includes a number of improvements based on recommendations from students and colleagues and on our own experience teaching the course over the last several years. In this edition we streamlined the narrative in several sections, added more proofs, many examples worked out in detail, and numerous new exercises. In all we added over 50 examples in the main text and 100 exercises (counting parts). Adopt/Adapt If you are an instructor adopting or adapting this PDXOpen textbook, please help us understand your use by filling out this formhttps://pdxscholar.library.pdx.edu/pdxopen/1015/thumbnail.jp
    corecore